Cisco I0S XR memory forensics analysis

Solal Jacob

Agence Nationale de la Sécurité des Systémes d'Information

2019

TOC

» | - /OS XR internals & forensics analysis
» || - Attack simulation
» |l - Detection

ANSSI Cisco 10S XR memory forensics analysis

2/33

| - 10S XR internals & forensics analysis

» We would like to be able to analyze a router to know if it was compromised

» For that we want to develop memory forensics tools to detect advanced
attack

» /OS XR is an exotic system used on core routers

ANSSI Cisco 10S XR memory forensics analysis

3/33

10S XR

» Used in Cisco routers (12000, ASR9000, ...)
> 32 bits version only
» Based on QNX 6.4

ANSSI Cisco 10S XR memory forensics analysis 4/33

QNX

> Microkernel released in 1982, now part of Blackberry

> Used in embedded system : Routers, Infotainment, Telematics (Westing
House, AECL, Air traffic Control, General Electric)

» Source was released then closed again

ANSSI Cisco 10S XR memory forensics analysis 5/33

@ QNX architecture

» Fault tolerant

» Reduced kernel attack surface
» Conforms to posix standard

» Customizable by OEM

ANSSI Cisco 10S XR memory forensics analysis

6/33

QNX Security & Forensics

» Some CVEs
» No hardening before 6.6

> Troopers 2016, QNX : "99 Problems but a Microkernel ain't one!” (Vuln
in message passing & IPC)

> Recon 2018, "Dissecting QNX" (Mitigation & PRNG)
» No forensics papers or presentations

ANSSI Cisco 10S XR memory forensics analysis 7/33

@ QNX startup

=500

IPL (at Startup procnto Boot script Drivers
reset vector) and your

program

» The IPL, Inital Program Loader, initializes the hardware, configures the
memory controller, loads the system image in RAM and jumps to it

» The startup code makes further hardware initilizations, launches the
microkernel procnto in virtual mode, puts all config info in the system page

procnto runs the boot script and launches other processes (path manager,
network stack, ...)

ANSSI Cisco 10S XR memory forensics analysis 8/33

@ QNX Firmware

> |FS : Image file system, read-only (procnto, bootscript, drivers, ..
» EFS : Embedded file system, read-write (program, data, utilities, ...

ANSSI

» Combined image that can be flashed directly on NAND

- s Final IPL size
Alig nt + Padding
(blocksize $
of onboard
flash) * IF5
Paddi
AN EFS starts
a new black
EFS

FicUrE — Combined image

» Blackberry provides tools to create and read those images

Cisco 10S XR memory forensics analysis

)

)

9/33

Communication between processes

» |PC : Use a message passing system
» Messages are synchronous and directed towards channels and connections
rather than threads

> A thread creates a channel to receive messages

» An other thread can make a connection by "attaching” to that channel,
then send messages

e Channel

L,\\J;:\j [« v Client
e i
server Cannections [\,Z}
f =
e Channel -
N
r\J[\\j e

FicURE — Combined image

ANSSI Cisco 10S XR memory forensics analysis 10/33

ANSSI

©

v

The message passing system

Object-1 (Boy) Object-2(Girl)

Message

Channels and connections each have an assigned file descriptor
When a thread creates a channel, it can register a path

Processes can open these paths via the path manager, that returns the file
descriptor needed to communicate

Messages are passed by being copied from the address space of one thread
to the address space of an other thread

There are very few syscalls under QNX 6.4 (~100)
The libc hides the message passing system like Linux libc hides syscalls

Cisco 10S XR memory forensics analysis 11/33

Linux libc syscall wrapper

> fd = open("file”);

fd = syscall(open_syscall_number, "file");

> write(fd, "abcd”, 4);

ret = syscall(write_syscall_number, fd, "abcd", 4);

> close(fd);

ret = close(close_syscall_number, fd);

ANSSI Cisco 10S XR memory forensics analysis 12/33

NX libc message wrapper

> fd = open("myfile");

fd = ConnectAttach(PATHMGR_COID, "myfile", 1, 0, 1);

sent_msg.type = IO_CONNECT

sent_msg.data = "myfile"

sent_msg.path_len = strlen("myfile");

MsgSend (fd, sent_msg, sent_msg_size, reply_msg, reply_msg.size);
ConnectDetach (£fd);

We connect to the service and we ask for a fd for this path (reply->pid is the pid of
the process that handles the hard disks)

fd = ConnectAttach(reply->nd, reply->pid, reply->chid, 0, 0);
MsgSend (fd, sent_msg, sent_msg_size, reply_msg, reply_msg_size)

ANSSI Cisco 10S XR memory forensics analysis 13/33

NX libc message wrapper

> write(fd, "abcd”, 4);

sent_msg_buffer.type = IO_WRITE

sent_msg_buffer.nbytes = 4

sent_msg.buffer.data = "abcd"

MsgSend (fd, sent_msg_buffer, sent_msg_buffer_size, ret_msg_buffer, sizeof (
ret_msg_buffer));

> close(fd);

sent_msg.type = I0O_CLOSE

sent_msg.size = sizeof (sent_msg);

ret = MsgSend(fd, sent_msg_buffer, sizeof(sent_msg), 0, 0);
ConnectDetach (fd);

ANSSI Cisco 10S XR memory forensics analysis 14/33

Memory acquisition

» Request memory mapping via the memory manager service
» Interfaced via a library call

» All physical memory is directly addressable

» No kernel drivers needed

ANSSI Cisco 10S XR memory forensics analysis 15/33

Memory acquisition tool

> Transfers the memory content via a network socket (to a listening netcat)
on QNX

» Cisco adds its own services and network stack
» They use a modified version of GCC to generate specific executables

> A second process manager service is used to launch these executables
(They have a JID instead of PID)

» Cisco modified top and other commands to list only applications with a JID

> It's difficult to generate a binary that links to the libsocket and the Cisco
network stack

» To create a socket it's possible to use the message system directly

ANSSI Cisco 10S XR memory forensics analysis 16/33

Executing the acquisition tool on /10S XR

» The memory acquisition tool can be transfered to /OS XR via ssh
» [t can't be run directly because Cisco removed the chmod tool

» To made the file executable, we used a trick

ANSSI Cisco 10S XR memory forensics analysis 17/33

ANSSI

v

Analysis of the memory dump

The pidin tool, that lists a lot of system informations, was studied

It reveals the use of a syspage_entry structure, that points to a lot of
interesting structures

To read different structures from the dump we need to know their physical
addresses

The virtual address of the syspage_entry struct can be listed via pidin
The syspage_entry structure is in the address space of procnto

procnto cr3 value is needed to convert syspage_entry virtual address to
physical one

Cisco 10S XR memory forensics analysis 18/33

procnto _address space

» To find procnto cr3 value, gemu is used to list the TLB entries and find
"constant” values

» The system uses identity mapping to translate virtual addresses to physical
ones

» The cr3 value is constant across boots, the value can be found in the /PL
(that launches procnto)

» procnto virtual address can be converted to physical thanks to this value

v

syspage_entry and a lot of user structures can be read
» Processes, memory map, channels, file descriptor, ... can then be listed

ANSSI Cisco 10S XR memory forensics analysis 19/33

ANSSI

QNX processes use IPC, known
as channels, to communicate
with other processes

All the structures containing
informations about connections
and channels are readable from
the memory dumps

A graph could be created to
visualize all the connections

The graph can be used, for
example, to know if a process
uses the network stack (Since
drivers are processes)

Connections and channels graph

Jqnxmemdump (1966121)

<,

prodbool/devc con- h|d @

pmc/hoodpmcnm smp instr (1)

‘ proc/boot/devb- e|de

proc/bom/sloger (4100)

Cisco 10S XR memory forensics analysis

sbinfio-pkt-v4-he (110609)

i proc/boomo usb (4101)

103)

20/33

ANSSI

Processes address space

Each process has its own address space

To extract each process and its memory map, for further analysis, the
physical addresses of its different segments in memory are needed

For that we need the cr3 value
cr3 is found by following structures linked to syspage_entry

Once we have cr3 we use it to read the PTE and other structures in order
to do virtual to physical translation (PAE is used in /0S5 XR)

We can then access all the address space of a process (the segments of the
executable mapped in memory and the different allocations made by the
process)

Cisco 10S XR memory forensics analysis 21/33

Reconstructing the binaries

» Only the data and text segment addresses are listed in procnto structures

> Binaries layout differs between QNX and /0S XR (but QNX binaries are
also found in /0S XR)

» They are both ELF

ANSSI Cisco 10S XR memory forensics analysis 22/33

@ @QNX binaries

QNX binaries are dynamic and have different kinds of segments loaded

We can’t know the address of the dynamic segments

In memory text segment is a direct mapping of the offset zero of the binary
So, it's easy to read the ELF header

The header can be used to rebuild a partial binary containing only the text
and data segments

vvyVvyyvyy

ANSSI Cisco 10S XR memory forensics analysis 23/33

ANSSI

10S XR binaries

The text segment is always located at 0x1000 in the binaries (it starts with
a NIAM header)

We don’t have access to the ELF header, it's not mapped in memory

The binaries are all statically compiled and only have a text segment, a
data segment, an interpreter string and an interpreter section

The in-memory data segment doesn’t have the same size as the one in the
binary, so our reconstructed binary will have a different size than the
original one

The interpreter string and section contents are always the same

We can reconstruct an almost complete binary by generating an ELF
header and then copying the different segments at the right offsets

The reconstructed binary can then be opened in any disassembler

Cisco 10S XR memory forensics analysis 24/33

Il - Attack simulation

» No /OS XR malware were found to test the detection capabilities of the
forensics tools

» We would like to simulate an in-memory attack

ANSSI Cisco 10S XR memory forensics analysis 25/33

@ Finding an interesting target

ANSSI

>

Many /OS XR binaries functions contain debug strings with the original
name of the function

We developed an /DA script to automatically rename the function to help
reverse engineering

A good target is the locald process, a daemon that handles authentication
(ssh, telnet, ...)

Thanks to our script we easily found the pw_check function, an interesting
one to modify

We created a binary with a patched version of this function, so the
function will grant access regardless of the password entered

A user could replace the original binary with this kind of patched binary,
but it will be easily detectable

Cisco 10S XR memory forensics analysis 26/33

ANSSI

Memory modification of a binary

To mimic an in-memory attack we created an executable that patches the
function directly in memory

We first need to find the address of the bytes we need to patch

» We use mmap__device_memory to give read access to the whole process

v

vvyyy

and find the bytes location

Then use it again to give write and execute permission to the page that
contains the code

Overwrite the code with our code
And finally put back the original permissions
To simulate the attack we executed our binary in a virtual machine

An attacker could have used the same techniques after exploiting a
software vulnerability

Cisco 10S XR memory forensics analysis 27/33

11l - Detection

» Infect a router in a virtual machine
» Remotely acquire the RAM of the router

» Perform a forensics analysis by using our tools and others to identify the
attack

ANSSI Cisco 10S XR memory forensics analysis 28/33

ANSSI

Binary diffing

We would like to compare all the binaries we have extracted from the
memory of an the infected router, to the original ones

The binares are in the firmware images, in the EFS partition

We can extract the partitions from the firmware images with a disk
forensics tool

Then we use Linux gnx6 file system support to mount the partition
read-only

We then extract all the binaries that are in different directories, each one
representing a package

Cisco 10S XR memory forensics analysis

29/33

ANSSI

Static analysis

We load each binary in IDA

Apply the script to rename the
functions automatically

Then use a plugin such as
Diaphora or Bindiff to compare
our binaries to the ones dumped
from memory

This lets us know if the text
segment is different between the
original binary and the one
extracted from memory

Then it's possible to analyze the
differences in each binary in
details

Q® Graph for pw_check_n (secondary)

linz short loc_421adc:

[ebprarg_8]
[ebptvar_d]
£ loc_a2124

v eax, [ebprarg 8] v eax, [ebprarg_4]
fov edx, [abptarg 4] push 5
push eax push ebx
push ebx push eax
push eax,
hov eax, 0 lda esp, och
lda esp, och omp eax, 1
fest eax, eax 5z short loc_421A4B.
inz short loc_a21a4
v esi, 0A24TLL
bmp short 1oc a:
100.00% (632,834) (4,149) 1.0

® Graph for pw_check_rn (primary)

linz short loc_421adc:

[ebprarg_8]
[ebptvar_d]
£ loc_42124

v eax, [ebprarg 8] ov eax, [ebprarg_4]
mov edx, [abptarg 4] push 5

push eax push ebx

push ebx push eax

push edx leall pw_cmp_rnl

eall strnemp_rnl fdd esp, ocn

ldd esp, och bmp eax, 1

feast | eax 5z short loc_421A4B.
inz short loc_a21a4

FI1GURE — Differences between original
and infected locald

Cisco 10S XR memory forensics analysis

30/33

ANSSI

Dynamic analysis

» We would like to make a dynamic analysis of the reconstructed binary
» The binary can't be run because values in the data segment are initialized

» For example the addresses of dynamic libraries

sub_42A1FB8 proc near
lea odx, dword 42cF15g

i AL pe s
rd_42CF158|

fedx Imov ecx,
jecxz short loc_42MFgyora 42cFiss dd 0

Toon
jecxz _ short loc_42A1F(dword 42CF158 dd OAAAEGS0R

il e =1
F1GURE — Disassembly of a call to F1GURE — Disassembly of the same
dlsym function from a reconstructed binary

Cisco 10S XR memory forensics analysis

31/33

Automation of the analysis process

We create a script that follows
the traditional forensics model :
preservation, collection, analysis,

presentation Automated analysis
> It periodically launches the @%
memory acquistion tool and 10S-XR Router

Amnesic-sherpa

stores the dumps

Diff script [processus as
ELF executables

. executables
» Then looks for differences
DFF

between the router original binary | Bk dump |_>| ONX Parttions
and the one in memory

» |t then extracts the different
processes as ELF executables

IDA (Rename function,
Diaphora}

» Finally it reports the results and
warns the investigator if
something suspicious is detected

Suspicious executable
Original executable

» If something suspicious is found FIGURE — Automated analysis of Cisco
the analyst can go further 10S XR

Function Diff

Analyst

ANSSI Cisco 10S XR memory forensics analysis 32/33

ANSSI

Conclusion

We developped a complete forensics & detection framework for /0S XR
routers

Our results show that it can detect attacks in an automated way

We would like to add support for other models of routers and add more
functionality

"Amnesic-Sherpa” the router analysis framework will be available on the
ANSSI github

You can follow me on twitter @ArxSys

Cisco 10S XR memory forensics analysis 33/33

