
Cisco IOS XR memory forensics analysis

Solal Jacob

Agence Nationale de la Sécurité des Systèmes d’Information

2019



TOC

▶ I - IOS XR internals & forensics analysis
▶ II - Attack simulation
▶ III - Detection

ANSSI Cisco IOS XR memory forensics analysis 2/33



I - IOS XR internals & forensics analysis

▶ We would like to be able to analyze a router to know if it was compromised
▶ For that we want to develop memory forensics tools to detect advanced

attack
▶ IOS XR is an exotic system used on core routers

ANSSI Cisco IOS XR memory forensics analysis 3/33



IOS XR

▶ Used in Cisco routers (12000, ASR9000, ...)
▶ 32 bits version only
▶ Based on QNX 6.4

ANSSI Cisco IOS XR memory forensics analysis 4/33



QNX

▶ Microkernel released in 1982, now part of Blackberry
▶ Used in embedded system : Routers, Infotainment, Telematics (Westing

House, AECL, Air traffic Control, General Electric)
▶ Source was released then closed again

ANSSI Cisco IOS XR memory forensics analysis 5/33



QNX architecture

▶ Fault tolerant
▶ Reduced kernel attack surface
▶ Conforms to posix standard
▶ Customizable by OEM

ANSSI Cisco IOS XR memory forensics analysis 6/33



QNX Security & Forensics

▶ Some CVEs
▶ No hardening before 6.6
▶ Troopers 2016, QNX : ”99 Problems but a Microkernel ain’t one !” (Vuln

in message passing & IPC)
▶ Recon 2018, ”Dissecting QNX” (Mitigation & PRNG)
▶ No forensics papers or presentations

ANSSI Cisco IOS XR memory forensics analysis 7/33



QNX startup

▶ The IPL, Inital Program Loader, initializes the hardware, configures the
memory controller, loads the system image in RAM and jumps to it

▶ The startup code makes further hardware initilizations, launches the
microkernel procnto in virtual mode, puts all config info in the system page

▶ procnto runs the boot script and launches other processes (path manager,
network stack, ...)

ANSSI Cisco IOS XR memory forensics analysis 8/33



QNX Firmware

▶ IFS : Image file system, read-only (procnto, bootscript, drivers, ...)
▶ EFS : Embedded file system, read-write (program, data, utilities, ...)
▶ Combined image that can be flashed directly on NAND

Figure – Combined image

▶ Blackberry provides tools to create and read those images

ANSSI Cisco IOS XR memory forensics analysis 9/33



Communication between processes

▶ IPC : Use a message passing system
▶ Messages are synchronous and directed towards channels and connections

rather than threads
▶ A thread creates a channel to receive messages
▶ An other thread can make a connection by ”attaching” to that channel,

then send messages

Figure – Combined image

ANSSI Cisco IOS XR memory forensics analysis 10/33



The message passing system

▶ Channels and connections each have an assigned file descriptor
▶ When a thread creates a channel, it can register a path
▶ Processes can open these paths via the path manager, that returns the file

descriptor needed to communicate
▶ Messages are passed by being copied from the address space of one thread

to the address space of an other thread
▶ There are very few syscalls under QNX 6.4 (~100)
▶ The libc hides the message passing system like Linux libc hides syscalls

ANSSI Cisco IOS XR memory forensics analysis 11/33



Linux libc syscall wrapper

▶ fd = open(”file”) ;

fd = syscall(open_syscall_number , "file");

▶ write(fd, ”abcd”, 4) ;

ret = syscall(write_syscall_number , fd, "abcd", 4);

▶ close(fd) ;

ret = close(close_syscall_number , fd);

ANSSI Cisco IOS XR memory forensics analysis 12/33



QNX libc message wrapper

▶ fd = open(”myfile”) ;

fd = ConnectAttach(PATHMGR_COID , "myfile", 1, 0, 1);

sent_msg.type = IO_CONNECT
sent_msg.data = "myfile"
sent_msg.path_len = strlen("myfile");
MsgSend(fd, sent_msg , sent_msg_size , reply_msg , reply_msg.size);
ConnectDetach(fd);

We connect to the service and we ask for a fd for this path (reply->pid is the pid of
the process that handles the hard disks)

fd = ConnectAttach(reply->nd, reply->pid, reply->chid, 0, 0);
MsgSend(fd, sent_msg , sent_msg_size , reply_msg , reply_msg_size)

ANSSI Cisco IOS XR memory forensics analysis 13/33



QNX libc message wrapper

▶ write(fd, ”abcd”, 4) ;

sent_msg_buffer.type = IO_WRITE
sent_msg_buffer.nbytes = 4
sent_msg.buffer.data = "abcd"
MsgSend(fd, sent_msg_buffer , sent_msg_buffer_size , ret_msg_buffer , sizeof(

ret_msg_buffer));

▶ close(fd) ;

sent_msg.type = IO_CLOSE
sent_msg.size = sizeof(sent_msg);
ret = MsgSend(fd, sent_msg_buffer , sizeof(sent_msg), 0, 0);
ConnectDetach(fd);

ANSSI Cisco IOS XR memory forensics analysis 14/33



Memory acquisition

▶ Request memory mapping via the memory manager service
▶ Interfaced via a library call
▶ All physical memory is directly addressable
▶ No kernel drivers needed

ANSSI Cisco IOS XR memory forensics analysis 15/33



Memory acquisition tool

▶ Transfers the memory content via a network socket (to a listening netcat)
on QNX

▶ Cisco adds its own services and network stack
▶ They use a modified version of GCC to generate specific executables
▶ A second process manager service is used to launch these executables

(They have a JID instead of PID)
▶ Cisco modified top and other commands to list only applications with a JID
▶ It’s difficult to generate a binary that links to the libsocket and the Cisco

network stack
▶ To create a socket it’s possible to use the message system directly

ANSSI Cisco IOS XR memory forensics analysis 16/33



Executing the acquisition tool on IOS XR

▶ The memory acquisition tool can be transfered to IOS XR via ssh
▶ It can’t be run directly because Cisco removed the chmod tool
▶ To made the file executable, we used a trick

ANSSI Cisco IOS XR memory forensics analysis 17/33



Analysis of the memory dump

▶ The pidin tool, that lists a lot of system informations, was studied
▶ It reveals the use of a syspage_entry structure, that points to a lot of

interesting structures
▶ To read different structures from the dump we need to know their physical

addresses
▶ The virtual address of the syspage_entry struct can be listed via pidin
▶ The syspage_entry structure is in the address space of procnto
▶ procnto cr3 value is needed to convert syspage_entry virtual address to

physical one

ANSSI Cisco IOS XR memory forensics analysis 18/33



procnto address space

▶ To find procnto cr3 value, qemu is used to list the TLB entries and find
”constant” values

▶ The system uses identity mapping to translate virtual addresses to physical
ones

▶ The cr3 value is constant across boots, the value can be found in the IPL
(that launches procnto)

▶ procnto virtual address can be converted to physical thanks to this value
▶ syspage_entry and a lot of user structures can be read
▶ Processes, memory map, channels, file descriptor, ... can then be listed

ANSSI Cisco IOS XR memory forensics analysis 19/33



Connections and channels graph

▶ QNX processes use IPC, known
as channels, to communicate
with other processes

▶ All the structures containing
informations about connections
and channels are readable from
the memory dumps

▶ A graph could be created to
visualize all the connections

▶ The graph can be used, for
example, to know if a process
uses the network stack (Since
drivers are processes)

./qnxmemdump (1966121)

sbin/devc-pty (139283) sbin/io-pkt-v4-hc (110609)

proc/boot/devc-con-hid (4103)

proc/boot/pci-bios (4099)proc/boot/slogger (4100)

proc/boot/procnto-smp-instr (1)

proc/boot/io-hid (4102)

proc/boot/devb-eide (8200)

proc/boot/io-usb (4101)

ANSSI Cisco IOS XR memory forensics analysis 20/33



Processes address space

▶ Each process has its own address space
▶ To extract each process and its memory map, for further analysis, the

physical addresses of its different segments in memory are needed
▶ For that we need the cr3 value
▶ cr3 is found by following structures linked to syspage_entry
▶ Once we have cr3 we use it to read the PTE and other structures in order

to do virtual to physical translation (PAE is used in IOS XR)
▶ We can then access all the address space of a process (the segments of the

executable mapped in memory and the different allocations made by the
process)

ANSSI Cisco IOS XR memory forensics analysis 21/33



Reconstructing the binaries

▶ Only the data and text segment addresses are listed in procnto structures
▶ Binaries layout differs between QNX and IOS XR (but QNX binaries are

also found in IOS XR)
▶ They are both ELF

ANSSI Cisco IOS XR memory forensics analysis 22/33



QNX binaries

▶ QNX binaries are dynamic and have different kinds of segments loaded
▶ We can’t know the address of the dynamic segments
▶ In memory text segment is a direct mapping of the offset zero of the binary
▶ So, it’s easy to read the ELF header
▶ The header can be used to rebuild a partial binary containing only the text

and data segments

ANSSI Cisco IOS XR memory forensics analysis 23/33



IOS XR binaries

▶ The text segment is always located at 0x1000 in the binaries (it starts with
a NIAM header)

▶ We don’t have access to the ELF header, it’s not mapped in memory
▶ The binaries are all statically compiled and only have a text segment, a

data segment, an interpreter string and an interpreter section
▶ The in-memory data segment doesn’t have the same size as the one in the

binary, so our reconstructed binary will have a different size than the
original one

▶ The interpreter string and section contents are always the same
▶ We can reconstruct an almost complete binary by generating an ELF

header and then copying the different segments at the right offsets
▶ The reconstructed binary can then be opened in any disassembler

ANSSI Cisco IOS XR memory forensics analysis 24/33



II - Attack simulation

▶ No IOS XR malware were found to test the detection capabilities of the
forensics tools

▶ We would like to simulate an in-memory attack

ANSSI Cisco IOS XR memory forensics analysis 25/33



Finding an interesting target

▶ Many IOS XR binaries functions contain debug strings with the original
name of the function

▶ We developed an IDA script to automatically rename the function to help
reverse engineering

▶ A good target is the locald process, a daemon that handles authentication
(ssh, telnet, ...)

▶ Thanks to our script we easily found the pw_check function, an interesting
one to modify

▶ We created a binary with a patched version of this function, so the
function will grant access regardless of the password entered

▶ A user could replace the original binary with this kind of patched binary,
but it will be easily detectable

ANSSI Cisco IOS XR memory forensics analysis 26/33



Memory modification of a binary

▶ To mimic an in-memory attack we created an executable that patches the
function directly in memory

▶ We first need to find the address of the bytes we need to patch
▶ We use mmap_device_memory to give read access to the whole process

and find the bytes location
▶ Then use it again to give write and execute permission to the page that

contains the code
▶ Overwrite the code with our code
▶ And finally put back the original permissions
▶ To simulate the attack we executed our binary in a virtual machine
▶ An attacker could have used the same techniques after exploiting a

software vulnerability

ANSSI Cisco IOS XR memory forensics analysis 27/33



III - Detection

▶ Infect a router in a virtual machine
▶ Remotely acquire the RAM of the router
▶ Perform a forensics analysis by using our tools and others to identify the

attack

ANSSI Cisco IOS XR memory forensics analysis 28/33



Binary diffing

▶ We would like to compare all the binaries we have extracted from the
memory of an the infected router, to the original ones

▶ The binares are in the firmware images, in the EFS partition
▶ We can extract the partitions from the firmware images with a disk

forensics tool
▶ Then we use Linux qnx6 file system support to mount the partition

read-only
▶ We then extract all the binaries that are in different directories, each one

representing a package

ANSSI Cisco IOS XR memory forensics analysis 29/33



Static analysis

▶ We load each binary in IDA
▶ Apply the script to rename the

functions automatically
▶ Then use a plugin such as

Diaphora or Bindiff to compare
our binaries to the ones dumped
from memory

▶ This lets us know if the text
segment is different between the
original binary and the one
extracted from memory

▶ Then it’s possible to analyze the
differences in each binary in
details

Figure – Differences between original
and infected locald

ANSSI Cisco IOS XR memory forensics analysis 30/33



Dynamic analysis

▶ We would like to make a dynamic analysis of the reconstructed binary
▶ The binary can’t be run because values in the data segment are initialized
▶ For example the addresses of dynamic libraries

Figure – Disassembly of a call to
dlsym

Figure – Disassembly of the same
function from a reconstructed binary

ANSSI Cisco IOS XR memory forensics analysis 31/33



Automation of the analysis process

▶ We create a script that follows
the traditional forensics model :
preservation, collection, analysis,
presentation

▶ It periodically launches the
memory acquistion tool and
stores the dumps

▶ It then extracts the different
processes as ELF executables

▶ Then looks for differences
between the router original binary
and the one in memory

▶ Finally it reports the results and
warns the investigator if
something suspicious is detected

▶ If something suspicious is found
the analyst can go further

Figure – Automated analysis of Cisco
IOS XR

ANSSI Cisco IOS XR memory forensics analysis 32/33



Conclusion

▶ We developped a complete forensics & detection framework for IOS XR
routers

▶ Our results show that it can detect attacks in an automated way
▶ We would like to add support for other models of routers and add more

functionality
▶ ”Amnesic-Sherpa” the router analysis framework will be available on the

ANSSI github
▶ You can follow me on twitter @ArxSys

ANSSI Cisco IOS XR memory forensics analysis 33/33


